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Abstract 

The Heisenberg equations of motion for the spin-�89 wave equation in general relativity are 
obtained by a covariant procedure. They are found to be similar to the equations of 
motion for a classical pole-dipole test-particle in general relativity. The identification is 
complete when the Heisenberg equations are taken to be satisfied by the respective 
expectation values. 

1. _Introduction 

Although the spin-{ wave equation in general relativity has existed for a 
long time (Weyl, 1929, Fock, 1929), little yet is known of its physical 
contents. In this paper we shall obtain the equations of motion in the 
Heisenberg picture and thereby suggest a link with the classical spinning 
test-particle in general relativity. 

While it is known that for the spin-�89 wave equation a hermitean 
Hamiltonian exists (Oliveira & Tiomno, 1962) so that one can go over to the 
Heisenberg picture without any problem, the loss of  manifest general 
covariance in such a procedure makes the interpretation of the subsequent 
equations rather difficult. Instead we shall use a device which treats the 
time-coordinate as a canonical variable on the same footing as the space- 
coordinates but with the permissible state-vectors restricted by a supple- 
mentary condition. In this way, covariant equations of  motion for the 
coordinates, their conjugate momenta, and the angular momentum of the 
particle can be written down by straight-forward computations. When these 
equations are taken to be satisfied by the expectation values of the respective 
quantities, they are completely identical to the equations for a classical 
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pole-dipole test-particle in general relativity first obtained by Papapetrou 
(1951), with the supplementary condition for the angular momentum that 
of Pirani's (1956) (see also Taub, 1964). 

2. Spin-�89 W a v e  Equat ion in General  Relat iv i ty  

In this section we shall establish the notations and collect together some 
facts which will be useful for later discussions. 

We take the point of view that spinors in an arbitrary Riemannian space 
are defined with respect to a pseudo-orthonormal tetrad (the Vierbeine) ei u 
satisfying 

g ~  e/~ e f  = ~hJ (2.1) 

where 9ij is the constant matrix (1 , -1 , -1 , -1) .  The notation to be used will 
be the common one in which Latin indices denote components with respect 
to the tetrad and Greek indices the space-time components. Raising and 
lowering of the Latin indices by ~ i  and its inverse ,/~J will be allowed. 
Conversion from the Latin indices to the Greek or vice versa is effected by 
multiplication with an appropriate number of vectors from the tetrad. 

Before writing the spin-�89 wave equation in general relativity (or the Dirac 
equation in an arbitrary coordinate system, which differs from it only in the 
vanishing of the Riemann-Christoffel curvature tensor) let us recapitulate 
the tetrad formulation in an external gravitational field. In this formulation, 
all dynamical quantities (other than the gravitational field) are to be written 
in terms of their tetrad-components. Equations satisfied by them are to be 
covariant, both under general coordinate transformations and independent 
rotations of the tetrads at different points. The conversion from the usual 
formulation to the tetrad formulation is straight-forward except for the 
covariant derivatives. For example, to rewrite the covariant derivative 
V~ T ~ of a vector field T ~ in terms of its tetrad-components T ~, we multiply 
V~ T ~ by eiv and write 

e~v V~ T ~ = V~(e~ T ~) - (V~ eta) T ~ 
= 0~ T ~ - / ' i s ~  T J 
---- Rh component of [0/~ + ( / /2) / 'k l  Mk~] T 

where 
Fi~. = e f  V. e~. (2.2) 

and in the last line, Tis regarded as a column vector and Mk~ 4 x 4 matrices 
satisfying 

[Mij ,  Mkl] = iC~j,u,Pq M p ,  (2.3) 
with 

Cij,kl,pq = ~ ~ tp 3 ol + ~ 3 it, 3za~ qiz j ~ qjk i --~lk31tP~zq~--~Tj~3itP3kal (2.4) 

In general, covariant differentiation V~ of a tensor of any rank is to be 
replaced by the operation 

l_ r ~  ~.r (2.5) d/~ = 0, + 2 ~  , ~,~k~ 
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with Mk, forming a set of  generators for the respective representation of  the 
homogeneous Lorentz group to which the tetrad-components of  the tensor 
belong. The commutation relation (2.3) is universal�9 

With these preliminaries, we can immediately write down the spin-�89 wave 
equation in general relativity as a direct generalisation of  the Dirac equation 
as follows: 

[ i r,k~ ~r '~ [ Ot~ + 2--  t'l'*~z] ~b - m~b = 0 (2.6) 

where the y's are 4 • 4 matrices satisfying 

{~,', y~} = 2~7 is (2.7) 
and 

i 
M,j  = -4 I t , .  r J] (2.8) 

are generators of the homogeneous Lorentz group in the representation by 
four-component spinors. 

The equation is obviously covariant under coordinate transformations if 
we remember that the individual components of  4, like the tetrad- 
components of a tensor, transform as scalars. To prove covariance under 
point-dependent rotations of the tetrads, consider the infinitesimal 
transformation 

ae, u = eoj eeU (2.9) 

where coiJ are arbitrary functions of  space-time subject only to the condition 

o~ij = -oJji (2.10) 

Straight-forward computation from (2.2) shows that 

8 FiJta = r Fk Jt, q- r 1-'it~# q- O u w ij (2.11) 

Together with the postulated transformation law for the spinor 

i 
ar 2 

= - - ~o lj M~i ~b (2.12) 

we can then establish 
i . ,  

8d~, 5b = - ~eo'.' M ,  jd~, ~ (2.13) 

Finally, making use of the commutation relations 

[y', Mjk] = i(8' j  Yk -- 8'k Y j) (2.14) 

we can show that the change in the first term of (2.6) is 

a( i~r ,  a ,  r  = - 2 o~,J M ,  X ihr"  a, r (2.1 5) 

Since the last term of (2.6) transforms in like manner, the covariance of (2.6) 
is then established. 
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Note that we have here a structure which is identical to that of the usual 
gange-invariant theories, with the homogeneous Lorentz group acting as 
the gauge group, and FtJ u the gauge field. The quantity R~J.~ obtained from 
the definition 

[dmdvl = t i?~J M, i  (2.16) 
2 -~ r,~ 

a s  

R l ~ v =  OvFii _ ~  r i j  . ~r, . pqriJ rk ,  (2.17) 
t l  t l  . t  v -T" - ~ v ~ . , i j  , k |  , . I .  t I  ,L V 

is the analogue of the electromagnetic fietd f~ ,  and transforms homo- 
geneously under the gauge group. Furthermore, it is just equal to the 
Riemann-Christoffel curvature tensor with two of its Greek indices 
converted into Latin indices, i.e. 

R~.v = eta eJp R~P~ (2.18) 

This justifies our choice of notation in (2.16). We leave to Appendix A for a 
proof of it. 

3. Heisenberg Equations o f  Motion 

The equation (2.6) gives the time-development of the wave function ~b in 
the Schr6dingel" picture. It can be written in the standard form of the 
SchrSdinger equation with a hermitean Hamiltonian (De Oliveira & 
Tiomno, 1962) and hence transformed to the Heisenberg picture in which 
the dynamical operators are given time-dependence. Such a procedure, 
however, will lead to non-covariant equations which are difficult to compare 
with the classical theory. We shall try to maintain explicit covariance by 
considering instead an enlarged system in which t and (h/i)/a/Ot are 
introduced as a pair of conjugate dynamical operators, and whose 
'dynamics' is understood as the dependence on a parameter ~- of the state- 
vector ~(xU;~ -) through the SchriSdinger equation 

where 

with 

i h ~ = ~ r  (3.1) 

= ~" rr. + m (3.2) 

h ij 
= ~df, =p~ + �89 ~ S~j (3.3) 

P~ - 7 ~ (3.4) 

Sij = hMi j  (3.5) 
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is in fact an operator whose null space is identical to the solution space 
of  (2.6). As shown in Appendix B, from the Heisenberg equation of motion 

ih ~ -  = [O, ~(~] (3.6) 

for any operator O in this generalised Heisenberg picture, one can recover 
the Heisenberg equations for the original system by operating both sides of 
(3.6) on vectors qa satisfying the constraint equation 

J~/f~ = 0 (3.7) 

provided we are allowed to replace expectation values of products of 
operators by the products of expectation values, an assumption we shall 
adopt in this paper. 

We shall now write down the Heisenberg equations for the operators x u, 
rr~, and S u. For x u, it is 

dx  ~ - 1 [x~, ~ ]  = y~ (3.8) 
dr  ih 

use having been made of the commutation relation 

[x',p~] = ili3~'v (3.9) 
For 7r~, we have 

dTr~ 1 1 v 1 
d~ - ~ [%' ~ ]  = ~ [%' v ] ~ + ~ v [~,,, ~ ]  (3.10) 

V } /I 1 1)hp . . v  

where we have used 
ih J ih . 

[%,, 7r~] = --Ri2 ~ ~Sij = - -R A p 2  "~ Sap (3.11) 

which is a direct transcription of (2.16) using also (2.18), and 

1 
# [%,, Y"] = -[d~, e l  Y'] 

l l j  k v = - ( 3  u e l )  y '  -- ~ 1-' v[Ml~, Y ] ek 

= (0~ ei ~ + Y~'i. e / )  yt (3.12) 
= -[O~ e~ ~ + (V~ e J,) ed e / ]  y~ 

=-(O~ e, ~ -  V~ e,Oy~ = {A;} y '~ 

Finally, for S~ we obtain 

d S u  - ~h [Sij, Yd] = 1 k 1 & ~ IS, j, v ] ~k + Yh v ~ [ s "  ~"] 

1 pq kl = ~ 7  U - y J ~ r ~ + ~ C  u,~t, F ~y Sv~ 

(3.13) 
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when use is made of  

and 

$. K. WONG 

- -~hCu,k~, F ~, Sp~ [Su .~ r , ] -  ~" ~, ~ 

(3.14) 

(3.15) 

which are immediate consequences of (2.14) and (2.3) respectively. 
The equations (3.8), (3.10) and (3.13) are to be supplemented by the 

constraint equation 
7" rru + m ~ 0 (3.16) 

which is a weak equation in the sense of  Dirac's (1964). As a simple 
consequence of the algebraic properties of the ~-matrices, we also have 

{S , ,  ~}  = 0 (3.17) 

If  we write u ~' =- dx~'/d~" for 7" and regard the subsequent equations as 
satisfied by the expectation values, we then obtain from (3.16) 

u" 7r~ + m = 0 (3.16a) 
from (3.10), 

Drr___~ _ � 89  u ~ Sap = 0 (3.10a) 
Dz 

where 

Drr~ = d~r~ _ {)/~} D~" d~" uV rra (3.18) 

from (3.17), 
S,  vu v = 0 (3.17a) 

and from (3.13) after multiplication by e~,eJ~ 

(aS, j 
ei~' eJ~ \ dr - �89 Y Fklt, u" u t, -- uv 15, 

The left-hand side of  the last equation can be written as DS,  v/D~', for 

ds.  la/ 

= e , e v - d ~ - r + [ ~ - ~ ( e ,  ttzo, uP e'a e~, { ~vp } uP e't, 

j dSu = e ~, e ~ ~ + (e~ Vp ei~, + e~,V o eJ~) uP Stj 

= e ' ~ , e J v ( ~ +  I"l'o, uP Sk,+ I'kspuPS,k) 

So we have for the angular momentum 

/~S, .  
D~" uurr" + u" rrt' = 0 (3.13a) 
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The equations (3.10a), (3.13a), (3.16a) and (3.17a) are very similar to the 
equations of  motion of  a classical pole-dipole test-particle in an external 
gravitational field. To complete the identification, we shall show that 
u 2 = u, u '  is a constant of  motion from these equations, which fact will then 
enable us to define the proper time of the particle through a normalisafion 
of the velocity. To do this, we multiply (3.13a) by u ~ and make use of (3.16a) 
to obtain 

DS~ u~ 
U 2 7Tg = -m~l~ -- DT 

Operating on this equation with ut'(D/Dr), using again (3.16a) and 
u~'(D%/Dr) = O, which is the consequence of  (3. lOa), we then have 

DU2 " Du2 i~ D [DSu, .'l 

The last term being zero by using (3.17a) and the antisymmetry of  S~,  we 
are left with 

D u  2 
- - ~ 0  
Dr 

and consequently 
1 

/12 ~_ __ 
K 2 

where ~c is a constant of motion. Defining S = (1/~r writing U~ = dxU/ds, 
m ' =  xm and eliminating % from equations (3.10a), (3.13a), (3.16a) and 
(3.17a) through the equation 

rr~ = - m '  U s - DD~ U ~ (3.19) 

we obtain finally t 

D ( , DS~u~ ~ ! ap 
Dss,m U s + DS ] + 2R tar U Sap = 0 (3.20) 

DSu~ + U, UP DS~p _ U~ U p D S j  = 0 (3.21) 
Ds Ds Ds 

S.~ U ~= 0 (3.22) 

U, UU = 1 (3.23) 

This set is completely identical to the equations obtained by Papapetrou 
(1951) and Pirani (1956) by taking the limit of an extended classical source 
of  energy-momentum. 

t Had we started with (2.6) but with m replaced by -m corresponding merely to a 
different convention for the usual Dirac equation, we would have arrived at the same 
equations but with Suv replaced by -S~v. It is not clear that these two systems of equations, 
though mathematically different, can be distinguished physically. 

15 
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4. Remarks 

We should of course hasten to add that the above argument is essentially 
formal in character. In the absence of detailed investigation of the conditions 
of validity of the approximation, it is hard to conclude whether the 
Heisenberg equations of motion are really satisfied by the expectation 
values. In particular, we have avoided including the equation 

dx .  dx ~ 

dr dr =g"~ 

suggested by the commutation relation {y~, y~} = 2~j,  which would lead to 
unwanted restriction on the velocity. In this sense, the argument should be 
taken as suggesting a connection of the spin-�89 wave equation to the 
equations for a classical pole-dipole particle rather than as an independent 
derivation of the latter. 

It is perhaps rather satisfying to note that in the particular case of special 
relativity, when the Riemann-Christoffel curvature tensor vanishes, the 
equations (3.20-3.23) can accommodate, through the arbitrariness of m', 
the motions of all the different local centres of mass of the particle (H/Snl and 
Papapetrou, 1939; Moiler, 1952; see also Schild, 1967). We may regard the 
usual Dirae equation as carrying with it this content. 

Finally, it would be interesting to generalise the present considerations to 
wave equations of arbitrarily high spin in general relativity, for this may 
open up, like the case with isotropie spin (Wong, 1970), the possibility to 
consider the limit when h tends to zero but the spin tends to infinity in such 
a way that a finite angular momentum survives in the classical limit. 
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Appendix A 

To prove RtJ~, = e~aeJpRaP~v, we start from the Ricci identity for an 
arbitrary vector field T~, viz., 

2Vt, V~a T a = Raper T o (A.1) 

where 

and we shall multiply both sides of (A.1) by eta. Noting from Section 2 that 

Vv T a = ei a dv T ~ (A.3) 
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we have 
e~a V~, V. T a = Vu(e~a V~ T a) - V. ei,x V~ T a 

= O~(d~Ti) - {fl~}dpT' -(V~,e'~)ej~ d~TJ 

= O~(d~T~)- Fijud~TJ- { P }d T' 
v~  o 

so that the left-hand side of (A.1), on multiplication by eia, becomes 
[d m d~] T ~, which equals RtS~,, Tj if we make use of  (2.16), choosing Mij as 
generators for the vector-representation of  the homogeneous Lorentz 
group. On the other hand, the right-hand side of  (A.1) becomes 
e~a RaP~, eJp T~. Hence RfJ~,~ = e~a e~p RaP~,. 

Appendix B 

To justify the device employed in Section 3 for obtaining the Heisenberg 
equations of motion through an enlargement of  the space of dynamical 
operators, consider a quantum mechanical system with a set of canonical 
coordinates collectively denoted by q and conjugate momenta p, with a 
Hamiltonian operator H(q,p, t). The wave function ~b(q, t) satisfies 

(a.1) 

Consider an enlarged system in which in addition to q and p, t and ~- form 
also a pair of conjugate variables satisfying 

[t, rr] = ih (B.2) 

and the wave function ~b(q, t; ~-) satisfies 

i h ~  = ~f~,J? (B.3) 

where 
=-f(H + ~) (B.4) 

fbe ing  an arbitrary operator. 
If  we require ~b to satisfy the supplementary condition 

(H + 7 0 tip = 0 (B.5) 

then the resulting system is equivalent to the original one in the Schr~dinger 
picture. In the (generalised) Heisenberg picture, ifO is an operator depending 
only on q and p, 

dO 
ih~-~z = [ O , ~ ]  = [O,f](H + Tr) + f[O,H] ,~ f[O,H] (B.6) 
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where ~ means equality when restricted to state-vectors satisfying (B.5). 
Also, 

dt 
= 1 [t,f] (H + 7r) + ~/~f[t, zr] ~ f  (B.7) 

d'r ih 

The method of Section 3 amounts to a proposal to use (B.6) and (B.7) in 
place of 

ih dO = [O, H] (B.8) 

for the original system. Though as operator equations they are not quite 
identical, under the assumption we made of replacing expectation values of 
operator products by products of expectation values, we have from (B.6) 
and (B.7) 

ih/a~ \ d r /  ( f )  ([O, H]) 

= (a tx)  ([O, H]) 
\UZl 

whence 
�9 dO th(--~)=([O,H]) 

This shows that the generalised Heisenberg equations of motion plus the 
assumption on expectation values are equivalent to the correct Heisenberg 
equations plus the same assumption. 
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